
PHENIX Technical Note

P.O.V.: PHENIX Offline Visualization

by
Jeffery T. Mitchell (Brookhaven National Laboratory)

and
Jerome Lauret (SUNY-Stony Brook)

5/31/01

Abstract

This Technical Note will describe the details of an event display for PHENIX data and simulations that is suitable for
generating Public Relations quality pictures for distribution.

1. Introduction

P.O.V. stands for the PHENIX Offline Visualization package. This package was developed to
serve primarily as a Public Relations Event Visualization for PHENIX. This is the package that
produced the picture of the first PHENIX collision within a couple of hours after it was recorded
(see Figure 1). That picture was included in the press release about RHIC’s first collisions. A
P.O.V. display has also appeared in the October 2000 issue of the CERN Courier (see Figure 3).

P.O.V. has many advantages for PHENIX event visualization. It is very flexible in the
customization of what it displays by simply editing the scene files - geometry and coloring are easy
to manipulate. The produced images are rendered using a ray tracing program, so effects like
lighting, transparency, shadowing, etc. can be used to enhance the image. Also, the resolution of
the output image can be adjusted to as high as 1280 x 1024 pixels.

The package is named P.O.V. since it uses the freeware, Open-Source package called Pov-Ray, or
Persistence Of Vision Ray Tracer as its rendering tool. You can download this package and see
what it can do by going to the Pov-Ray web site at http://www.povray.org/. You must have access
to a computer with this ray tracer installed in order to produce displays. Pov-Ray was chosen since
it is free software and it is supported on many platforms including LINUX and Windows 98/NT.
Pov-Ray is also easy to use, especially for those familiar with GEANT geometry.

Pov-Ray is the same package that has been used to generate many RHIC and PHENIX animations
that have appeared on many national newscasts, including the Virtual Tour of PHENIX. You can
view these animations at the web site http://www.phenix.bnl.gov/WWW/software/luxor/ani/.

Figure 1: PHENIX P.O.V. event display produced within a couple of hours after PHENIX’s first recorded RHIC
collision.

2. The P.O.V. Analysis Package

The software necessary for generating a P.O.V. display from either real or simulated data can be
found in the PHENIX repository under /offline/analysis/POV. Up-to-date detailed information on
the POV package can be found on the web at the URL
http://www.phenix.bnl.gov/WWW/software/luxor/uti/pov/.

Classes are provided in the POV package to produce visualizations from PHENIX DSTs (using the
class named dstPOV) and from PISA output ROOT files (using the class named simPOV). For
both, the general procedure is the same (see the next section for more details on how to generate a
picture). You must first have a DST or PISA file available. Then you must execute the
corresponding ROOT macro (within ROOT) that will run the package on the event number that you
specify. The package will produce a Pov-Ray hits file containing any specified hit and track
information. Finally, you must run Pov-Ray on the Pov-Ray input file that contains the PHENIX
geometry and pulls in the hits file. You will find that generating the Pov-Ray hits file within
ROOT is nearly instantaneous once the requested event is read. However, for a central Au+Au
event, it takes Pov-Ray nearly 5 minutes to render the event on a 450 MHz LINUX system at
460x460 pixel resolution.

3. Producing a Display From a DST File

This section outlines a step-by-step guide describing how to go from a PHENIX raw data file to a
P.O.V. picture.

• Obtain the P.O.V. package by typing cvs checkout offline/analysis/POV in your working
directory.

• Use the standard PHENIX procedure to build the pov package libraries. Make sure that your
LD_LIBRARY_PATH environment variable contains the location of the libraries.

• Run the standard CAMERA chain on a raw data file to produce a DST file.

• Select the event number (in sequence on the DST) which you wish to display.

• Generate a Pov-Ray hits file from the DST file (default name: povTest.pov). In order to do this,
follow the following steps:

• Edit povData.C (in the macros directory of the package) in your running directory. This is
the ROOT macro that will run the dstPOV methods on the DST file. Set the input
parameters to the desired values (including the event number and the name of the output
Pov-Ray file). See the web documentation for updated descriptions of the input parameters.

• Run ROOT.

• Type .x povData.C() to execute the macro within ROOT. The macro will skip to the event
number you have selected and then analyze that event before stopping.

• Type .quit to get out of ROOT.

• Run Pov-Ray on the output Pov-Ray hits file using the default PHENIX Pov-Ray set-up file
that contains the geometry description (/macros/PHENIX.pov in the package). If you are not
using the default file names, you will need to edit PHENIX.pov to change that name (near the
bottom of the file). The camera position is defined near the top of the PHENIX.pov file. If you
are on a UNIX system, you can generate a plot with the following sample command:

 povray +i PHENIX.pov -geometry 400x400 -display :0.0 &

See the Pov-Ray documentation for more details about how to run the rendering program. The
PHENIX.pov file includes the generated Pov-Ray file from the previous step. You will see the
resulting display, which will be saved to disk in the format specified in your Pov-Ray initialization
file.

4. Producing a Display From a Simulation (PISA) File

This section outlines a step-by-step guide describing how to go from a PHENIX PISA output
ROOT file to a P.O.V. picture.

• Obtain the P.O.V. package by typing cvs checkout offline/analysis/POV in your working
directory.

• Use the standard PHENIX procedure to build the pov package libraries. Make sure that your
LD_LIBRARY_PATH environment variable contains the location of the libraries.

• Run the standard CAMERA chain on a raw data file to produce a DST file.

• Select the event number (in sequence in the PISA file) which you wish to display.

• Generate a Pov-Ray hits file from the PISA file (default name: povTest.pov). In order to do
this, follow the following steps:

• Edit povGEANT.C (in the macros directory of the package) in your running directory. This
is the ROOT macro that will run the simPOV methods on the PISA file. Set the input
parameters to the desired values (including the event number and the name of the output
Pov-Ray file). See the web documentation for updated descriptions of the input parameters.

• Run ROOT.

• Type .x povGEANT.C() to execute the macro within ROOT. The macro will skip to the
event number you have selected and then analyze that event before stopping.

• Type .quit to get out of ROOT.

• Run Pov-Ray on the output Pov-Ray hits file using the default PHENIX Pov-Ray set-up file
that contains the geometry description (/macros/PHENIX.pov in the package). If you are not
using the default file names, you will need to edit PHENIX.pov to change that name (near the
bottom of the file). The camera position is defined near the top of the PHENIX.pov file. If you
are on a UNIX system, you can generate a plot with the following sample command:

 povray +i PHENIX.pov -geometry 400x400 -display :0.0 &

See the Pov-Ray documentation for more details about how to run the rendering program. The
PHENIX.pov file includes the generated Pov-Ray file from the previous step. You will see the
resulting display, which will be saved to disk in the format specified in your Pov-Ray initialization
file.

5. Visualization Implementation Details

This section will describe the details of the implementation of the visualization of the hits and
tracks for both the simulation and the data.

Although this package may have some uses as a tracking debugging tool, it is limited by the fact
that several steps by the user are necessary to produce a picture, and the turn-around time is not
immediate from data taking to the picture. That is, this package is not directly interactive. It is best
used when you have a real cool event and you know where you would like to place the camera for
visualization, and then letting it take the snapshot for distribution.

At the time of the writing of this Note, the package is supported for v03 DSTs and PISA99 GEANT
files running within ROOT version 2.23 using the pro.6 libraries. For reference, the package in this
configuration will analyze files used for analyses leading up to production of the QM2001
Proceedings. See the web documentation for the current support status of this package.

For visualization of simulated (GEANT) data, only the GEANT hits and tracks information is used.
For each detector, the 3-dimensional Cartesian coordinates of each recorded GEANT hit are used in
the display. Activation of the hits display for a given detector is handled through the user-controlled
data members of the simPOV class, which can be set within the ROOT macro. Hit associations into
tracks are facilitated by using the utilities in the cge (Central Arm Global Evaluations) package.
Documentation on cge can be found in PHENIX Technical Note 384 and on the web at the URL
http://www.phenix.bnl.gov/WWW/software/luxor/cge/package/index.html. The cge utilities return
GEANT hit-to-track relation information, which is then written to the output Pov-Ray hits file upon
user request. Figure 2 shows a P.O.V. display from a central HIJING Au+Au PISA99 ROOT file in
the Run 2000 detector configuration with no magnetic field with dch+pc1+pc2+pc3 associated
GEANT tracks shown.

Figure 2: P.O.V. visualization from a Run 2000 central HIJING Au+Au PISA99 file (B=0). Shown are GEANT hits
from the BBC, MVD, DCH, PC1, PC2, PC3, TEC, and TOF. Track associations between DCH+PC1+PC2+PC3 are

also shown.

For visualization of analyzed DST data, the situation is complicated by the fact that the drift
chamber and the time expansion chamber (TEC) both are projective detectors and provide only 2-
dimensional information for their recorded hits. For drift chamber hits, it is assumed that the z
information for that hit can be estimated by the drift chamber reconstruction. So, if the z
information for a drift chamber hit is not available, P.O.V. will not plot it, nor will it attempt to
estimate it. The same applies to drift chamber tracks. If the drift chamber track does not contain z
information, it is not plotted. For TEC tracks, the PC3 reconstructed clusters are queried and the
TEC tracks are assigned the z-coordinate of the closest PC3 cluster to the TEC track in phi. The
PC3 cluster z-coordinate must be consistent with the sign of the TEC track z coordinate to be used
in the assignment. If a z-coordinate cannot be assigned, the TEC track is not plotted. It is planned to
install a query to the reconstructed global tracks followed by an assignment of the TEC track z-
coordinate from the projection estimate provided by the track model in the near future. For the
remaining detectors, the 3-dimensional information is obtained directly from the DST quantities.
For the calorimeters, an option is provided to represent reconstructed clusters as spikes proportional
to their energy. There is also an option to draw straight line projections of the drift chamber tracks
to the beam-line vertical plane. In the near future, an option will be added to plot the poly-line track
model estimates. Figure 3 shows a P.O.V. visualizations from a DST reconstructed from data taken
during Run 2000 with the magnetic field turned off.

Figure 3: This picture shows one of the first events that PHENIX recorded. The yellow dots in the interior are drift
chamber and pad chamber reconstructed hits. The white dots and lines on the exterior are pad chamber reconstructed

hits and reconstructed calorimeter clusters with the line length proportional to the energy deposited. On the far side are
hits from the pad chamber and the time expansion chamber. The pink lines are projections of the drift chamber
reconstructed tracks to the vertex where the collision took place. For this event, there was no magnetic field.

